Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

h(X) → c(n__d(X))
Used ordering:
Polynomial interpretation [25]:

POL(activate(x1)) = x1   
POL(c(x1)) = x1   
POL(d(x1)) = x1   
POL(f(x1)) = 2·x1   
POL(g(x1)) = x1   
POL(h(x1)) = 2 + x1   
POL(n__d(x1)) = x1   
POL(n__f(x1)) = 2·x1   
POL(n__g(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__d(X)) → D(X)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__g(X)) → G(X)
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
C(X) → D(activate(X))

The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__d(X)) → D(X)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__g(X)) → G(X)
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
C(X) → D(activate(X))

The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)

The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

ACTIVATE(n__f(X)) → ACTIVATE(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(ACTIVATE(x1)) = x1   
POL(C(x1)) = x1   
POL(F(x1)) = 2 + 2·x1   
POL(activate(x1)) = x1   
POL(c(x1)) = x1   
POL(d(x1)) = x1   
POL(f(x1)) = 2 + 2·x1   
POL(g(x1)) = x1   
POL(n__d(x1)) = x1   
POL(n__f(x1)) = 2 + 2·x1   
POL(n__g(x1)) = x1   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ RuleRemovalProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__f(X)) → F(activate(X))
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)

The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__f(X)) → F(activate(X))
The remaining pairs can at least be oriented weakly.

F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
Used ordering: Polynomial Order [21,25] with Interpretation:

POL( C(x1) ) = x1


POL( f(x1) ) = x1 + 1


POL( c(x1) ) = max{0, -1}


POL( n__g(x1) ) = max{0, -1}


POL( g(x1) ) = 0


POL( n__f(x1) ) = x1 + 1


POL( activate(x1) ) = x1


POL( d(x1) ) = 0


POL( n__d(x1) ) = 0


POL( ACTIVATE(x1) ) = x1


POL( F(x1) ) = x1



The following usable rules [17] were oriented:

activate(X) → X
g(X) → n__g(X)
f(X) → n__f(X)
c(X) → d(activate(X))
f(f(X)) → c(n__f(n__g(n__f(X))))
activate(n__d(X)) → d(X)
activate(n__g(X)) → g(X)
activate(n__f(X)) → f(activate(X))
d(X) → n__d(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ RuleRemovalProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)

The TRS R consists of the following rules:

f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.